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Abstract

Reconfigurable Intelligent Surfaces (RIS) have been highlighted by the research community as a key
enabling technology for the enhancement of next-generation wireless network performance, including
energy efficiency, spectral efficiency, and network throughput. This paper investigates how RIS-assisted
communication can effectively maximize the downlink throughput of a cellular network. Specifically, the
paper considers a communication scenario where a single base station serves multiple ground users with the
aid of an RIS placed on a building facade. For such a communication scenario, we considered an optimization
problem aimed at maximizing the overall downlink throughput by jointly optimizing power allocation at the
base station and phase shift of RIS reflecting elements, subject to power consumption and quality-of-service
constraints. To address its non-convex nature, the original optimization problem has been divided into two
subproblems. The first one, for power control with fixed phase shift values, is a convex problem that can be
easily solved. Subsequently, a phase shift searching procedure to solve the non-convex problem of RIS phase
shift optimization has been adopted. The results from numerical simulations show that the proposed method
outperforms other conventional methods proposed in the literature. In addition, computational complexity
analysis has been conducted to prove the low complexity of the proposed method.
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1. Introduction
The current generation of wireless communication sys-
tems is experiencing a huge increase of connected
mobile devices with a corresponding exponential
increase of mobile data traffic. According to data anal-
ysis and forecasts from the International Telecommuni-
cation Union Radiocommunication Sector (ITU-R), this
trend will inevitably cause a collapse of the current 5G
networks in the near future [2]. Under these perspec-
tives, both industry and academia are actively working
towards the development of the new wireless com-
munication network referred as sixth-generation (6G).

∗Corresponding author. Email: phuctq@hcmute.edu.vn
This article was presented in part at International Conference on
Industrial Networks and Intelligent Systems (INISCOM), 2022 [1].

This new standard is expected to introduce innovative
physical layer technologies that, compared to 5G, will
provide increased network capacity, as well as increased
reduced latency and better communication reliability
[3–5]. Reconfigurable intelligent surface (RIS) is one of
these potential technology for 6G [6]. More specifically,
RIS is a two-dimensional surface consisting of massive
reflecting elements, which are entirely programmable
through the usage of appropriate external signals [7].
As result, the adoption of RIS will allow to reflect
and redirect the transmitted signal enabling then the
possibility to control the signal propagation over the
wireless medium. As illustrated in Figure 1, through a
RIS-enabled communication scenario it results possible
to manipulate and reflect radio signals in order to
ensure improved coverage and signal quality, even in
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challenging environments. Furthermore, compared to
massive multiple-input multiple-output (MIMO) tech-
nology, RIS represents a more cost-effective and energy-
efficient solution. [8]. As result, the adoption of RIS in
wireless communication scenarios has gathered signifi-
cant attention from the research community, who have
recognized it as a pivotal enabling technology for 6G
due to its immense potential and capabilities [9]. Some
of the most relevant works are discussed in the next
subsection.

1.1. Related works on RIS
Authors in [10] proved how, compared to amplify-and-
forward (AF), a RIS-assisted wireless communication
system outperforms in terms of ergodic capacity
(EC )and outage probability, and then in terms of
lower symbol error rate (SER) and average end-to-
end signal-to-noise ratio (SNR). Particularly, the end-to-
end wireless channel from source to destination with
the assistance of single RIS and multiple RISs was
considered, then, the authors derived the close-form
expression for OP, and SER in both investigate cases.
Likewise, the close-form expression of instantaneous,
average end-to-end SNR, and EC of both RIS-assisted
RF-relaying wireless system are derived to analyze
the performance in case of single RIS and multi-RISs.
Additionally, in [11] they considered communication
scenario with single antenna at both transmitter
and receiver, assisted by a RIS with N reflecting
elements. In order to validate the performances of
such RIS-asssited scenario, they provided a closed-
form expressions the EC upper bound and outage
probability approximation under the assumption of
mixed Rayleigh and Rician fading channels, which
have been validated by using Monte Carlo simulations.
This has been further validated in [12], by deriving
closed-form expressions for the OP, average SER and
average communication rate. Last but not least, the
authors also shown how the number of reflecting
elements of RIS in single-input single-output (SISO)
channel impact on channel diversity. A RIS-aided
SISO wireless system with underlying non-orthogonal
multiple access (NOMA) communication consisting
has been considered in [13]. In this case, OP of the
considered system has been derived in closed-form,
showing the significant benefit of RIS in enhancing the
coverage under the new channel statistics link from
BS to cell-edge user devices via RIS with Nakagami-m
fading.

In addition to the mathematical models that repre-
sents a tangible tool for demonstrating the potential
of RIS-assisted communications, several studies have
also been conducted with the main aim of optimizing
the main variables of the entire communication system
and then maximizing the overall system performances.

An optimization framework aimed at maximizing the
energy efficiency (EE) of a multiple-input single-output
(MISO) RIS-assisted network was proposed in [14]. The
proposed optimization framework jointly optimized
power allocation at the base station and the phase shift
of the RIS to serve multiple users.

Optimization strategies to maximize the weighted
sum rate (WSR) of all users have been proposed in
[15, 16]. More specifically, authors in [15] considered an
RIS-assisted multi-user MISO wireless communication
scenario. The considered system consisted in an N-
element RIS and one multi-antenna wireless access
point providing services to single-antenna users in a
quasi-static flat-fading channel environment. In this
context, WSR of the network was maximized by
jointly optimizing beamforming at the access point
and RIS phase-shoft vector. On the other hand, a
RIS-aided millimetre-wave (mmWave) massive MIMO
was considered in [16]. More specifically, authors
considered a system where the direct links between
the BS and mobile users are blocked by objects. Under
this assumptions, the WSR was maximized by jointly
optimizing BS’s beamforming matrix and the RIS’s
phase-shift vector.

An iterative optimization algorithm to maximize the
achievable rate of a MIMO system equipped with a RIS
have been proposed in [17]. In this case, the proposed
algorithm jointly optimized the covariance matrix of the
transmitted signal and the phase shift coefficients of RIS
elements.

Recently, the possibility of including RIS into
unmanned aerial vehicle (UAV) communication scenar-
ios has also gaining attention. Indeed, compared to the
conventional BS-based communications, the simultane-
ous usage of these technologies within the same com-
munication area definitively allows for improving the
strength f the signal received by the ground users [18–
20]. However, these types of communication scenarios
comes with additional variables to optimized in order to
maximize the entire system performances, especially in
particular where an high quality of connection between
UAV and ground users must be guaranteed, such as
disaster rescue mission and geography exploration.

Authors in [21] considered a communication scenario
with a single UAV, a ground user, and an RIS placade
on a building facade. For this communication setup,
in order to maximize the average achievable system
rate, an optimization framework that jointly optimizes
the beamforming vector and the UAV’s trajectory was
proposed.

In [22], a deep reinforcement learning (DRL) based
approach was investigated to maximize the EE of
multi-UAV networks. To tackle this problem, a DRL-
based method the joint optimization of RIS phase
shift optimization and power allocation of UAVs was
proposed and validated.
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The problem of maximizing the average achievable
rate of a RIS-aided UAV network was presented in [23].
To deal with the non-convexity of such problem, the
authors proposed to divide the original problem into
two sub-problems, i.e., one for passive beamforming
optimization and anther for trajectory optimization.
Nevertheless, the main focus in [24] was on the
maximization of total network throughput through the
optimization power allocation and phase shift subject
to power consumption constraints and minimum
guaranteed quality-of-service at users.

The usage of RIS technology is also gaining attention
in the context of Mobile Edge Computing (MEC)
scenarios. The usage of RIS within a MEC scenario
holds the potential to address the latency requirements
envisioned for 6G-enabled MEC services. Especially,
in [25] proposed the RIS-aided NOMA network
combined with radio frequency energy harvesting
and MEC technique. To evaluate the effectiveness of
networks parameters to the proposed scheme, the
authors considered the optimization problem with two
object functions including the probabilities of task
offloading and energy transfer efficiency. It is worth
to mention that in RIS-aided MEC system, the radio,
computing, and wireless environment are considered
to optimize [26, 27]. In line with this view, the objective
in [26] is to optimize resource allocation including
the transmit power and the computing capacity of
the RIS-assisted MEC system. It is highlighted that
the authors formulated the RIS optimization problem
for dependent RIS response profiles over the multi-
carrier frequency selective channels. Meanwhile, to
overcome the huge challenges of wireless network
including the limited coverage and computational
capacity, the authors propose the UAV-RIS assisted
MEC network in [27]. To exploit the potential of
proposed scheme, the authors derived the max-min
computation capacity problem through considering the
trajectory, computation capacity, beamforming of UAV,
and time slot partition, uplink signal detection, and
beamforming at RIS as well.

1.2. Motivation and Contributions

This paper represents an extension of the work resented
in [1]. In particular, we extend our previous work by
jointly optimizing the phase-shift matrix at RIS and
power allocation at BS subject to minimum quality-
of-service and power constraints, showing how the
performances varies as the number of RISs in the area
increases. Then, the main contributions of this work can
be summarized as follow: The main contributions of
this paper are listed as follows:

• We consider a RIS-aided wireless communication
scenario were different RISs are deployed in order
to provide downlink service to group of users.
For such scenario we formulated an optimization
problem aimed at maximizing the total network
throughput under the power consumption and
quality-of-service constraints.

• Due to the non-convexity nature of the proposed
problem, we divided into two sub-problems,
for which an iterative frameworks is proposed.
Such framework summarized in Algorithm 1
and Algorithm 2, was based on the usage of
effective approximations, logarithm inequalities
for relaxation.

• Finally, we investigated how the proposed joint
optimization method outperform in maximizing
total network throughput and the worst case
mobile unit throughput compared to conven-
tional methods.

The rest of the paper is organized as follows. System
model and the problem formulation are provided
in Section 2.1. Section 3, illustrates the joint power
allocation and phase shift optimization, and how it
is divided into two subproblems including power
control coefficients optimization and RIS phase shift
optimization, respectively. Simulation and performance
evaluations results are discussed in Section 4. Finally,
the paper is concluded Section 5.

Table 1. Notations

Symbol Definition

H0, Hm BS and the RIS height, respectively.
Φm Phase shift matrix of the m-th RIS
H Hermitian conjugate operation

h0,m ∈ CN×1 Channel matrix between the BS and the m-th RIS
hHm,k ∈ C

1×N Channel matrix between the m-th RIS to the (m, k)-th MU
pm,k Transmission power of BS to the (m, k)-th MU

ωk ∼ CN (0, σ2
k ) AWGN at the (m, k)-th MU

α Path loss exponent
gm,k ∈ C Cascaded channel matrix of the link BS-(m, k)th MU
pm,k Transmission power of the BS to the (m, k)-th MU

ηLoS , ηNLoS Average additional losses of LoS and NLoS

2. System Model and Problem Formulation
In this section, we investigate the signal model for
downlink multi-user SISO cellular network, then we
formulate an optimization problem for maximizing the
total network throughput by jointly optimal allocation
of of transmit power at BS and phase shift of RIS.
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Figure 1. RIS-assisted downlink cellular communications.

2.1. System Model
Due to the objects obstructing the communication
link, the mobile users (MUs) in cellular network either
receive low quality signal or not signal at all from the
BS. To tackle this problem, we propose the system
model in Fig. 1, particularly we focus on enhancing
the total network throughput of the multi-user cellular
network with the assistance of RISs. More specifically,
how illustrated in Fig. 1, we consider a single antenna
BS serving a set of M = {1, ...,M} small cells, each of
them containing different numbers of MUs, which
are supposed to be uniformly distributed within the
whole coverage area. All these aures are indicated as
K = {1, ..., K}. In order to solve the issue by blockage
effect from buildings and other obstacles, it is supposed
that different N -elemment RISs are placed on the
facade of different buildings building, each of them
used to cover a specific small cell. The number of MUs
covered by the m-th cell are indicated asKm = {1, ..., Km}
for m ∈ M, while the k-th user within the m-th group
as (m, k)

2.2. Communication Model
Within the considered communication scenario, the 3D
Cartesian coordinates of the BS, the RISs and of the

generic MU are indicated as (x0, y0, H0), (xm, ym, Hm),
m ∈ M and (xk , yk , 0), k ∈ K, with H0 and Hm being the
z-coordinate, i.e., height the BS and the RIS altitude,
respectively. We assume that there exists a direct
communication between BS and the m-th RIS. Then,
as also assumed in [28, 29], such communication link
follow the free-space path loss model:

β0,m = β0l
−2
0,m, m = 1, ...,M, (1)

with β0 being the channel gain at reference position,
and l0,m the distance between the BS and the m-th RIS
calculated as:

l0,m =
√
d2

0,m + (H0 −Hm)2, (2)

with d0,m =
√

(x0 − xm)2 + (y0 − ym)2.
On the other hand, since the channel from the RIS to
the MUs is usually affected by shadowing and blockage,
a non-LoS (NLoS) model is applied. In this case then,
the channel from the m-th RIS to the (m, k)-th MU is
modelled as [30]

βm,k = P Lm,k + ηLoSP LoS
m,k + ηNLoSP NLoS

m,k

= 10α log
(√

d2
m,k + H2

m

)
+ AP LoS

m,k + B, (3)
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where ηLoS and ηNLoS are the average additional losses
for LoS and NLoS, respectively, A = ηLoS − ηNLoS and

B = 10α log( 4πlm,k
λc

) + ηNLoS . The path loss is given as
follows:

P Lm,k = 10 log(
4πlm,k

λc
)α , m = 1, ...,M, (4)

where λc = c/fc is the wavelength of the carrier at
frequency fc epressed in Hz, while α ≥ 2 is the path loss
exponent. As regards the probability of LoS and NLoS,
they are modelled by [31]:

P LoS
m,k =

1

1 + a exp

−b (
arctan

(
Hm
dm,k

)
− a

) , (5)

P NLoS
m,k = 1 − P LoS

m,k , (6)

whit a and b representing environmental constraints.
Finally, the phase shift matrix at the m-th RIS is

expressed as:

Φm = diag[φ1m, φ2m, ..., φNm], m ∈ M (7)

where diag(a) denotes a diagonal matrix having the
element of vector a along its diagonal. More specifically,
each coefficient is modelled as φnm = αnme

jθnm with
αnm ∈ [0, 1] and θnm ∈ [0, 2π] (∀n = 1, 2, ..., N , m ∈ M)
indicating the amplitude and phase shift of received by
the signal from the n-th reflecting element. It is worth
to mention that we assume αnm = 1 [32]. In order to
take into account the effect of the small scale fading
coefficients, we assume that for both BS to m-th RIS,
and m-th RIS to the (m, k)-th MU channels, the small-
scale fading contributions are modelled as independent
and identically distributed random variables with zero
mean and unit variance, respectively indicated as ĥ0,m ∈
CN×1 and ĥHm,k ∈ C

1×N . We also also use h0,m ∈ CN×1

and hH
m,k ∈ C

1×N to indicate the matrices containing the
channel coefficients between the BS and the m-th RIS
and the m-th RIS to the (m, k)-th MU in the m-th group,
respectively. As result the total channel coefficient from
the BS to the (m, k)-th MU through the m-th RIS can be
expressed as [33]:

gm,k = hH
m,kΦmh0,m, m ∈ M, k ∈ Km, (8)

where h0,m =
√
β0,mĥ0,m and hH

m,k =
√
βm,k ĥ

H
m,k .

2.3. Signal Model
As illustrated in Figure 1, we have considered a
downlink communication scenario where a signal from
a BS is trnasmitted to K single antenna MUs with the
support of RISs deployed on buildings facade to help in
improving the BS-MUs communication link. Supposing

that the communications are performed through the
Time Division Multiple Access (TDMA) scheme, the
signal at the k-th MU in the m-th group can be
expressed as:

ym,k =
√
pm,kgm,kxm,k + ωk , m ∈ M, k ∈ Km, (9)

in which pm,k denotes the transmission power allocated
by the BS to the (m, k)-th MU, xm,k with ||xm,k ||2 ≤ 1 is
the informative message, ωk ∼ CN (0, σ2

k ) is the Additive
White Gaussian Noise (AWGN).

indicating with p0 = [p0,m]Mm=1, where p0,m =

[pm,k]Km
k=1 power control coefficients used at the BS,

and with ΦM = [Φm]Mm=1 the phase shifts coefficients of
RISs, the SNR at the (m, k)-th MU be formulated as

γm,k

(
pm,k ,Φm

)
=

pm,k

∣∣∣gm,k

∣∣∣2
σ2
k

. (10)

Then, the throughput of the (m, k)-th MU, expressed
in bit per second per Hertz (bps/Hz) can be expressed
using the Shannon formula for the channel capacity:

Rm,k

(
pm,k ,Φm

)
= log2

(
1 + γm,k

(
pm,k ,Φm

))
(11)

Finally, the total throughput of all MUs in the
considered network can be formulated as

Rtotal

(
p0,ΦM

)
=

M∑
m=1

Km∑
k=1

Rm,k

(
pm,k ,Φm

)
. (12)

2.4. Problem Formulation
As already mentioned before, we aim at jointly
optimizing the power control coefficients (p0) at the
BS and the phase shift (ΦM ) of the RISs, in order
to maximize the total downlink network throughput,
under power consumption and QoS constraints. To
this end, we formulated the following optimization
problem:

max
p0,ΦM

Rtotal

(
p0,ΦM

)
(13a)

s.t.
M∑
m=1

Km∑
k=1

pm,k ≤ Pmax
0 , m ∈ M, k ∈ Km, (13b)

Rm,k

(
pm,k ,Φm

)
≥ r̄m,k , m ∈ M, k ∈ Km, (13c)

0 ≤ θnm ≤ 2π,∀n = 1, 2, ..., N , m ∈ M, (13d)

where the constraint (13b) represents the total power
consumption constraint at the BS. On the other hand,
constraints (13c) and (13d) accounts for the individual
QoS requirement at the (m, k)-th MU and lower and
upper bounds of the phase shifts of RIS elements,
respectively.
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3. Proposed Optimization Framework
In order to deal with the non-convexity of problem (13)
and its related constraints, we proposed an algorithm
that iteratively optimize the power control coefficients
at the BS and the phase shifts of RIS reflecting elements.
The main components of this algortihm are explained in
the following subsections.

3.1. Optimization of Power Control Coefficients
At this stage we assume that ΦM is fixed, then (13)
obtaining then the following optimization problem for
the power coefficients:

max
p0

Rtotal

(
p0

)
(14a)

s.t. (13b), (13c). (14b)

This problem is solved by an effective approximation
obtained by using logarithm inequalities [34, 35] based
on the property that the convex function f (z) = log2(1 +
1
z ) ≥ f̂ (z), with

f̂ (z) = log2

(
1 +

1
z̄

)
+

1
1 + z̄

− z
(1 + z̄)z̄

, (15)

∀z > 0, z̄ > 0. Then, the throughput expression can be
rewritten as:

Rm,k

(
pm,k

)
≥ R̂

(iter)
m,k

(
pm,k

)
, ∀k ∈ Km, ∀m ∈ M, (16)

where

z =
σ2
k

pm,k

∣∣∣gm,k

∣∣∣2 , z̄ = z(iter) =
σ2
k

p
(iter)
m,k

∣∣∣gm,k

∣∣∣2 ,

R̂
(iter)
m,k

(
pm,k

)
= log2

(
1 +

1
z̄

)
+

1
1 + z̄

− z
(1 + z̄)z̄

. (17)

Then, the optimization problem (14) at the i-th iteration
can be rewritten as:

max
p0

R̂
(iter)
total

(
p0

)
(18a)

s.t. (13b), (18b)

R̂
(iter)
m,k

(
p0

)
≥ r̄m,k , m ∈ M, k ∈ Km, (18c)

where R̂
(κ)
total

(
p0

)
=

∑M
m=1

∑Km
k=1 R̂

(κ)
m,k

(
pm,k

)
.

It is noticed that (18) is convex. Thus, it can be
solved efficiently by using standard software, such as
CVX tools[36]. The proposed iterative power allocation
procedure to solve the problem (18) to provide the
optimal power control coefficients (p∗0) is summarized
in the Algorithm 1, where the maximum number of
iterations is Itermax = 20.

Algorithm 1 Power allocation procedure

1: Initialize:
2: Let the iteration value iter = 0 and Itermax = 20
3: Let the feasible point for ΦM , and the tolerance
ξ = 10−3

4: while (The convergence is not reach or iter ⩽ Imax)

5: Solve (18) to find (p(i+1)
0 ) using CVX tool

6: Update iter = iter + 1
7: end while
8: Output: the optimal power control coefficients p∗0

3.2. Phase Shift Optimization
Similarly, we assume that power control coefficients
p0 is fixed, thus the problem (13) can be rewritten as
follows:

max
ΦM

Rtotal (ΦM ) (19a)

s.t. (13c), (13d). (19b)

In this problem we introduce the notation for the
cascaded channel hHm,kΦmh0,m = υHmχm,k where υm =
[υ1

m, ..., υ
N
m ]H with υnm = ejθnm (∀n = 1, 2, ..., N ), χm,k =

diag(hHm,k)h0,m, and ρk = P0/σ
2
k . Supposing |υnm|2 = 1, the

(13d) constraints becomes the unit-modulus constraint
[37]. Then, the problem (19) is equivalent to the
following:

max
υm, m∈M

M∑
m=1

Km∑
k=1

log2

(
1 + ρkυ

H
mχm,kχ

H
m,kυm

)
(20a)

s.t. υHmχm,kχ
H
m,kυm ≥

(
2r̄m,k − 1

)
/ρk , (20b)

|υnm|2 = 1,∀n = 1, 2, ..., N , m ∈ M. (20c)

Since (20) is still non-convex we used a relaxation
method in order to obtain a convex version of this opti-
mization problem. In particular, we first denote Xm,k =
χm,kχ

H
m,k and υHmXm,kυm = tr

(
Xm,kυmυ

H
m

)
= tr

(
Xm,kΥm

)
where Υm = υmυ

H
m satisfies the condition Υm ⪰ 0 and

rank(Υm)=1, ∀m ∈ M. This allowed us to relax the
rank-one constraint of (20c) [38]. Finally, (20) can be
rewritten as:

max
υm, m∈M

M∑
m=1

Km∑
k=1

log2

(
1 + ρktr

(
Xm,kΥm

))
(21a)

s.t. tr
(
Xm,kΥm

)
≥

(
2r̄m,k − 1

)
/ρk , (21b)

Υm(n,n) = 1,∀n = 1, 2, ..., N , m ∈ M, (21c)

Υm ⪰ 0. (21d)

Problem (21) is a convex semidefinite program
(SDP) [37], which can be efficiently solved by using
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CVX tool. Algorithm 2 illustrate the proposed Block
Coordinate Descendent (BCD) method employed to
find the optimal phase shift (Φ∗M ).

Algorithm 2 Phase shift searching procedure

1: Initialize:
2: Let the iteration value iter = 0 and Itermax = 20
3: Let the feasible point for p0, ξ = 10−3, and f

(0)
m,k

4: while (The convergence is not reach or iter ⩽ Imax)

5: for m in range [1 : M]

6: Solve (21) to find (Φ(iter+1)
M ) using CVX tool

7: Update f
(iter+1)
m,k

8: end for
9: Update iter = iter + 1
10: end while
11: Output: The optimal phase shift Φ∗M

Then, the intractable optimization problem in (13)
is solved by combining the Algorithm 1 power
allocation optimization and Algorithm 2 RIS phase shift
optimization.

4. Simulation Results

Table 2. Simulation Parameters

Parameter Value

Radius of BS’s coverage circle 500m
Radius of expanded deployment 1500m

BS’s location (0,0,30)m
White noise power density -130 dBm/Hz

QoS threshold 1 bps/Hz
Tolerance for convergence of algorithm ξ = 10−3

Bandwidth 10MHz
BS transmit power [43:46]dBm

Number of users in small cell [20, 30]
Number of RISs [4, 8, 12, 20]

Number of reflecting elements [100, 150, 200, 250, 300]

In this section, we illustrate the performances of
our proposed optimization method obtained through
numerical simulation carried out using Matlab. To per-
form the simulation, we use the personal computer
with CPU Intel(R) Core(TM) i7-9700 CPU @ 3.00GHz
and 16GB memory. Simulation parameters are sum-
marized in Table 2. As regards the channel modelling
we considered the same settings adopted in [34, 39].
The performances of our proposed method, indicated
as (OOP), have been compared with the performances
achieved by oter conventional methods such as Optimal
power allocation with Random phase shift (ORP) ,
and Equal power allocation with Optimal phase shift
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Figure 2. Total network throughput versus transmission power at
BS with M = 4, K = 20, N = 200.
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Figure 3. Total throughput versus transmission power at BS with
M = 8, K = 30, N = 200.

(EOP) demonstrate the results in case of either without
optimizing power allocation or without phase shift
optimization, respectively. Additional, the Equal power
allocation - Random phase shift (ERP) has also been
considered, which is the one not optimizing neither
power allocation nor phase shift coefficients.

4.1. The total network throughput
To demonstrate the outperform of jointly optimization
problem, we show the results in difference scenarios
obtained by changing maximum transmit power,
number of RIS, and number of reflecting elements per
RIS. To take into account the effect of both number
of RIS and number of MU in each group of user,
Figure 2 illustrates how the total network throughput
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Figure 4. Total throughput versus number of reflecting elements
(M = 8, K = 30, Pmax

0 = 46 dBm).

varies when he number of RISs and the number of UEs
are M = 4 and K = 20, respectively. Similarly, Figure 3
illustrates the case when M = 8 and K = 30. In both
cases, the number of reflecting elements per RIS is
fixed to N = 200. As a general trend, one can easily
note how the total network throughput increases as the
transmit power at the BS increases too. In addition,
from these two figures we can also observe how the
gap between the proposed method (OOP) and the ERP
becomes bigger as the transmit power goes up. Last but
not least, the total network throughput also increases
number of RISs in the scenario. We can then state that
the consider method, where the optimal phase shift
is obtained through Algorithm 2, result to be more
efficient than the others in all scenarios in Figure 2 and
Figure 3. It is obvious the OOP achieved approximately
four times higher than the ERP without optimization at
Pmax

0 = 45 dBm with M = 30, K = 30, and N = 200 in
Figure 3.

We also illustrate how the total network throughput
varies with different number of reflecting elements per
RIS, which in Figure 4 vary from 100 to 300 while
M = 8, K = 30, and Pmax

0 = 46 dBm. In this case, it
can also be observed how to an increase of number of
reflecting elements corresponds an increase of the total
network throughput. In particular, as exptected, it can
be noted how the total network throughput achieved
though the OOP is significantly larger than others
resource allocation schemes. Particuarly, it can achieve
approximately a four times higher throughput when
compared with the ERP. Finally, the results in Figure 5
demonstrate the total network throughput of obtained
by the proposed method by varying the number of RIS,
i.e., M = 4, M = 12, and M = 20, respectively. Also in
this case, it can be observed how the total network
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Figure 5. Total network throughput of the proposed method
jointly optimization with different number of RISs (M = 4, M =
12, M = 20).
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Figure 6. Worst-case MU throughput versus transmit power at
BS (M = 8, K = 30, N = 200).

throughput increases significantly when the number of
RIS rises from M = 4 to M = 20. Particularly, the gap of
throughput between M = 4 to M = 20 changes steeply
when the transmit power increase from 44dBm to
46dBm, i.e., approximately 56bps/Hz at peak transmit
power 46dBm.

4.2. The worst-case MU throughput
In this part, we consider the total network throughput
of the worst-case MU in order to prove the proposed
method outperform when compared with conventional
scheme also in this case.

As expected, the result in Figure 6 demonstrates the
superiority of the proposed method (OOP) compared
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Figure 7. Worst-case MU throughput versus number of RIS
elements N (M = 20, K = 30, Pmax

0 = 46dBm).
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Figure 8. Worst-case MU throughput of the proposed method
jointly optimization with different number of RISs (M = 4, M =
12, M = 20).

to the conventional schemes including OPH, EOP, and
ERP, respectively, in case of worst-case MU throughput
when the values are fixed at M = 8, K = 30, and N =
200. At the onset, it is clear that the worst MU
throughput of OOP is equal to 1 bps/Hz at Pmax

0 =
43dBm, and Pmax

0 = 44dBm, while at Pmax
0 = 45dBm,

and Pmax
0 = 46dBm are higher and reach the peak value

approximately double at Pmax
0 = 46dBm. Likewise, ORP

achieves a 1 bps/Hz thoguhput when the transmit
power of BS grows up from Pmax

0 = 43dBm to Pmax
0 =

46dBm, meanwhile the worst MU throughput of EOP
increase when the transmit power increases. However,
without optimization ERP, the worst MU throughput is

less than 0.5 bps/Hz, so it is unsatisfied the individual
QoS constraints in (13c).

On the other hand, to prove the effect of the
number of reflecting element per RIS, in Figure 7, we
plot the worst-case MU throughput by fixing Pmax

0 =
46dBm), M = 20, K = 30, while the number of reflecting
elements ranges from 100 to 300. In this case , it can
be noticed that the throughput achieved by the worst-
cse MU mostly satysfies the individual QoS constraint
expressed in (13c) with the value higher than 1bps/Hz,
except when the minimum considered transmit power
Pmax

0 = 43dBm is considered. Conversely, it is obvious
the when no optimization is applied, i.e., ERP, the MU
throughput of the worst-case MU is nearly equal to
zero even if the number of reflecting element increases.
On the other hand, Figure 8 shows the worst-case
MU throughput achieved by varying the number of
RIS (M = 4, M = 12, M = 20), while the number of
reflecting element is fixed to N = 200, and the number
of user in each small cell is fixed to K = 30. It can
be seen from this figure that in the majority of cases
the MU throughput of the proposed method is mostly
greater than 1 bps/Hz, as well as how the perceived
throughput increases when the number of RISs and the
transmit power of BS increase too. Last but not least,
the MU throughput at M = 20 is approximately 2.5
times higher than MU throughput at M = 12 when the
transmit power is set at Pmax

0 = 43dBm.

5. Conclusions and Future Directions

In this paper, we have investigated how the integra-
tion of RIS can improve the network performances of
SISO downlink cellular wireless networks. Specifically,
our focus has been on optimizing the total network
throughput under the constraints of maximum transmit
power at the BS and QoS requirements of users. To
address this challenge, we formulated a related opti-
mization problem, for which we have introduced an
iterative algorithm that jointly optimizes the power
allocation and phase shift of RISs. The numerical results
outlined the efficacy of our proposed system when
compared to other conventional resource allocation
schemes. In particular it has been illustrated how the
total network throughput can be highly maximized
when both power allocation and phase shift are opti-
mized. Furthermore, even in worst-case MU scenarios
throughput, the proposed methods demonstrates supe-
rior performance when power allocation and phase shift
coefficients are jointly optimized. As future research
direction, we will extend this work by considering
multiple antennas BS, and then introducing the active
beamforming at BS into the optimization problem.
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ABSTRACT The concept ofMobile Edge Computing (MEC) has been recently highlighted as a key enabling
technology for the deployment of sixth-generation (6G) wireless network services. On the other hand, the
possibility of combining Unmanned Aerial Vehicles (UAV) with Reconfigurable Intelligent Surfaces (RIS)
has also been recognized as a powerful communication paradigm able to provide improved propagation
characteristics of wireless communication channels, as well as increased capacity and extended coverage.
Then, the possibility of merging the characteristics of such a communication paradigm with the one
provided through MEC represents a valid solution to fulfill the main requirements of 6G networks. In this
paper, we consider the combination of computation offloading and resource allocation in an MEC-based
system where the MEC server is hosted by a massive MIMO base station, which serves multiple macro-
cells assisted by a UAV-equipped RIS. In this context, we focus on minimising the latency for executing
tasks of all user equipment (UE) within the considered scenario. To tackle this problem, we formulate
an optimisation problem that jointly optimises computation offloading from user equipment (UE) towards
the MEC server, and communication resources in the underlying UAV-assisted and RIS-aided network.
The extensive simulation results demonstrate how the proposed method outperforms in terms of providing
reduced latency for the considered system when compared with other conventional schemes.

INDEX TERMS Computation offloading, mobile edge computing, reconfigurable intelligent surfaces,
resource allocation, unmanned aerial vehicle.

I. INTRODUCTION
Wthin the last two decades, wireless communication tech-
nologies have undergone a rapid advancement process,
leading to the development of smaller, more portable, and
intelligent mobile devices. This process has marked the dawn
of the Internet of Things (IoT) era. On the one hand, the

The associate editor coordinating the review of this manuscript and

approving it for publication was Yeon-Ho Chung .

widespread use of such devices has paved and still continues
to pave the way for the deployment of innovative services,
which constantly simplify and enhance our daily lives.
However, according to the International Telecommunication
Union (ITU), such exponential diffusion of portable devices
is expected to lead to a significant rise in global mobile
subscribers, projected to reach approximately 17 billion
by 2030, with a corresponding generation of data traffic
envisaged to soar to around 5 zettabytes per month [1].
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This represents clear evidence that shortly we may assist to
a collapse of the fifth-generation (5G) network technology
if adequate actions are not taken. Indeed, such collapse
will be mainly caused by the deployment of new capacity-
hungry communication use cases and services such as multi-
sensory extended reality, autonomous vehicles, industrial
automation, healthcare systems, and video streaming, which
are envisioned to be delivered within the upcoming years.
[2]. However, the evolution of wireless networks must
extend beyond the possibility to create more capacity to
accommodate this surge. Indeed, next-generation networks
must also deliver real-time communication with near-zero
latency (communication lags less than 1 ms) and ultra-
reliable transmission, i.e., less than 10−5 of communication
error probability. These features are expected to become a
reality through the full roll-out of 6G mobile communication
systems [3], [4].

Furthermore, 6G technology is also expected to provide
improved communication efficiency and intelligent data
processing features for smart connected devices [5]. Within
this regard, one approach that has gained particular attention
within the last few years is the so-called MEC paradigm.
With such an approach, computationally intensive tasks can
be either partly or entirely offloaded and executed at theMEC
servers, which are usually put at the edge of networks [6],
[7], [8]. In this way, IoT devices with limited computational
capabilities can offload the execution of the task to the
edge server, reducing then the latency of the application,
as well as increasing their operational lifetime since they
are also energy-constrained. Then, one can easily notice why
MEC has been highlighted as a valid candidate to provide
improvements to next-generation wireless networks in terms
of reduced latency and improved energy efficiency [8].
Nevertheless, the full deployment of 6G networks is also

strongly dependent on providing innovative technologies
that can improve the propagation characteristics of the
wireless channel. Indeed, 6G communication scenarios will
be highly complex and subject to strong high penetration
losses of communication signals since THz communications
are expected to be supported. This problem has been partly
addressed with the introduction of massive multiple-input
multiple-output (mMIMO) and hybrid analog and digital
beamforming technologies [9], [10]. However, designing
highly efficient multi-antenna transceivers for beamforming
on THz bandwidth is challenging. To this end two main
solutions have been identified as valid candidates to provide
improvements at the physical layer: i) UAV-based commu-
nications, and ii) RIS-assited communication environments.
Indeed, the main distinctive feature of UAV-based commu-
nications, when compared to conventional static base station
(BS) communication, is the possibility of establishing line-
of-sight (LoS) communication between UAV, acting as flying
BS, and ground users. In this way, it will be possible to
offer increased signal strength, which in turn enables the
possibility to increase network performances [11]. On the
other hand, RIS are entirely programmable metasurfaces,

typically placed on a building facade, that through the usage
of appropriate external signals allow to reflect the wireless
signal in the desired direction. In this way, RIS can be
employed to provide additional sources of links with the
main aim of compensating for path loss and channel sparsity,
enhancing then the effective connections between the base
station and users [12]. Interestingly, the possibility ofmerging
the benefits of these two physical layer solutions by realizing
RIS-assisted UAV communications is also receiving a lot of
attention [13], [14], [15].

Then, from the above discussions, one can easily observe
how the possibility of implementing MEC-based solutions
over underlying RIS-assisted UAV communications holds
great potential for the deployment of the next generation of
wireless networks. Some of the most relevant work presented
in the literature on these novel research areas are discussed in
the next section.

A. RELATED WORKS
As previously mentioned, the idea of integrating the advan-
tages of LoS transmissions, through the adoption of UAVs,
with the potential of implementing RIS to create a smart
and controllable propagation environment is gaining attention
as a compelling future research direction contributing to the
deployment of next-generation wireless networks.

For example, authors in [13] considered a communication
scenario where multiple UAVs equipped with an onboard
RIS are used to support transmission subject to Ultra-reliable
and low-latency communication (URLLC) constraints. In this
case, each UAV acts as a repeater aimed at reflecting
the signal from a macro BS to all users in the networks
located in different areas far away from the BS. For such a
communication scenario, authors formulated an optimisation
problem for jointly optimising UAVs’ deployment, power
allocation at BS, phase-shift of RIS, and blocklength of
URLLC transmission blocks. Such complex and non-convex
optimisation problem, aimed at maximizing communication
reliability and fairness among users, has been solved by
adopting a deep neural network (DNN) based solution.
Through numerical it has been highlighted the great potential-
ities of aerial RIS in supporting stringent URLLC demands.

Another work focused on showing the potentialities of
aerial RIS in further extending the coverage range of massive
multiple-input multiple-output (mMIMO) networks has been
presented in [16]. In this case, the authors considered
an optimisation problem to maximize the total network
throughput by finding the optimal power control coefficients
at the BS and the phase shift coefficients of the multiple RISs
used in the system. By solving this optimisation problem
through an iterative algorithm, authors illustrated how aerial
RISs can achieve higher levels of network throughput as well
as improvement for the users with worst-case throughput and
less computational complexity when compared with other
benchmark schemes.
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On the other hand, the investigation on how UAV-enabled
communications can contribute to further improving the
performance of MEC systems represents another important
research direction. Under this perspective, the optimal
computation and communication resource allocation problem
for UAV-assisted MEC systems under a non-orthogonal
multiple access (NOMA) scheme has been considered
in [17]. More specifically, they considered a communication
scenario where a UAV serves as a MEC server-equipped
flying base station (UAV-MEC). Under these assumptions,
an iterative algorithm for jointly optimising user association,
transmit power, and computing capacity allocation in order
to minimise the total latency of UEs was proposed. Through
numerical simulations, it has been highlighted how the
proposed scheme outperforms other benchmark schemes in
terms of offering overall reduced communication latency
for the underlying UEs. Noteworthy, the usage of under-
lying NOMA communications resulted to provide better
performances when compared with conventional orthogonal
frequency-division multiple access (OFDMA) systems.

The possibility of reducing task offloading latency in
MEC-based systems through the adoption of RIS has been
studied in [18]. In this case, they considered a RIS-aided
wireless MEC system for heterogeneous networks (HetNet).
For such a setting, they formulated the optimisation problem
for minimizing the overall system delay by jointly optimising
caching, task offloading, and computing resources for the
MEC system, as well as resource allocation for the RIS
and BS sides. To deal with the resulting NP-hard mixed
integer nonlinear programming problem, they proposed a
two-stage optimisation algorithm. Through numerical results,
it has been shown how the adoption of RIS represents a very
effective solution to greatly reduce the task computing delay
in MEC HetNet systems.

Recently, possibilities of fully integrating RIS and UAV
technologies into MEC-based systems have been also
investigated. A novel RIS-enhanced and UAV-assisted MEC
framework with underlying NOMA communication has been
investigated in [19]. More specifically, in this case, authors
supposed that a single-antenna UAV is employed to offload
the computation tasks to single antenna ground access points
(APs) with the assistance of a RIS. To maximise the UAV’s
computation capacity, they proposed a two steps optimisation
algorithm that jointly optimise the reflecting phase shift of
the RIS, communication, and computation (2C) resource
allocation, decoding order, and UAV’s deployment which
was supposed to be static. The numerical results provided
within this study demonstrated that the computation capacity
is greatly improved with such an approach when compared
with other solutions proposed in the literature. A similar
work has been presented in [20]. In this case, it has been
supposed that the UAV acts as a relay node for supporting
multiple offloading computation tasks to remote access points
from ground users, through the assistance of the RIS. Also in
this case the usage of NOMA as a communication paradigm
was considered. However, in this case, authors considered

the possibility for the UAV to dynamically moving within
an optimal trajectory. Under these assumptions, a method
for jointly optimising computation and offloading bits, RIS
phase shift design, bandwidth allocation, and the trajectory
of the UAV was proposed. Through this study, authors
illustrated how the considered system can provide enhanced
computation capacity, as well as how the inclusion of RIS and
NOMA impact finding the optimal trajectory for the UAV.

B. MOTIVATION AND CONTRIBUTIONS
Based on the previous discussion, is evident how the
possibility of implementing MEC systems assisted by the
usage of both UAV and RIS technologies is gaining a lot
of attention by the research community. More specifically,
it has been highlighted how the complete integration of both
technologies [19], [20] can provide higher benefits when
compared with the exclusive inclusion of a single technology,
i.e., UAV-based MEC systems [13], [16] or RIS-assisted
MEC systems [18]. However, to the best of the author’s
knowledge, the majority of works focused on building such
unified network, i.e., including both UAV and RIS, have
considered RIS installed on the facade of buildings.

Under these perspectives, in this paper, we considered
the optimisation problem of computation offloading and
resource allocation for MEC systems assisted by a RIS-
equipped UAV. A similar work in terms of communication
environment has been presented in [21], in which authors
aimed at maximising the energy efficiency of a single-
antenna communication system. In contrast, this paper
provides the following contributions to the current state of
the art:
• We propose a novel optimisation framework for a
MEC system, hosted within a massive MIMO Base
Station (MBS), assisted by the usage of a RIS-equipped
UAV able to fly within the coverage area. For such a
system, we formulated an optimisation problem aimed
at minimising the system latency by jointly optimising
the power allocation of each user, user association,
phase shift configuration of RIS reflecting elements,
and computing resource allocation at the MBS subject
to the MBS’s computing resource constraints and QoS
requirements.

• We design an iterative algorithm to efficiently solve
the proposed optimisation problem by applying some
approximation and inequalities, path following, and
block coordinate descent (BCD) methods. An algorithm
for determining the UAV trajectory based on the density
of ground users is also provided.

• By means of extensive simulation results, we show
that our proposed method outperforms the benchmark
strategies indicating the effectiveness of our proposed
method.

The remainder of this paper is organized as follows. The
considered system model is presented in Section II. Sec-
tion III provides the formulation of the optimisation problem
for latency reduction, as well as the proposed methodology.
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The effectiveness of the proposed algorithm in minimising
the total system latency is illustrated in Section IV. Finally,
conclusions and future research directions are provided in
Section V.

II. MEC SYSTEM MODEL
A. SYSTEM MODEL
As illustrated in Figure 1, we consider a mMIMO com-
munication system, which provides coverage extension
between the MBS and distributed users (UEs) (e.g., mobile
users, vehicles, internet-of-thing (IoT) sensors) through the
assistance of assisted a RIS-equipped UAV. In this case,
the support of RIS, combined with the flexible deployment
of UAV, allows to provide enhanced network performances,
in terms of reliable wireless network operation with high
quality-of-service (QoS) to UEs in areas that are seriously
impacted by propagation blockage (directly to/from the
MBS) such as shadowing and blockage geometry [22], [23],
[24]. Within the considered scenario, we suppose that a large
antenna array consisting of L-elements is used by the MBS
to provide service to K single-antenna users. We also assume
that the UEs are grouped into M clusters represented by the
set KU = {K1, . . . ,KM } with Km = {1, . . . ,Km},m =
1, . . . ,M , with cluster having different numbers of users.
To support the M clusters of UEs, we use one RIS-equipped
UAVworking as a small-cell base station where the RIS panel
is comprised of N discrete elements to reflect the signal from
each group of UEs to the MBS. Hence, in general, we denote
with (m, k)-th UE as the k-th UE of the m-th group with
m = 1, . . . ,M and k ∈ Km. We use um,k as the user
association indicator to denote whether the kth UE of the m-
th cluster offloads its computing task to the MEC server as
follow:

um,k =

{
1 if computing task offloading is needed,
0 otherwise.

(1)

We denote um = [um,k ]
Km
k=1 the association vector within the

cluster, while u = [um]Mm=0 the entire user-associationmatrix.
As the RIS-equipped UAV reaches them-th cluster, users that
needs to offload a task to the MBS are served according to
time divisionmultiple access (TDMA) technique. In this case,
the main functionality of the RIS is to steer the beam from the
ground user to the MBS. In this way we guarantee that RIS
will only reflect the desired signal towards the MBS and no
signal form other users [25], [26].

B. CHANNEL MODEL
By considering a 3DCartesian coordinate system,we indicate
the MBS’s position, the UAV-RIS position, and users’
positions as, (x0, y0,H0), (xU , yU ,HU ) and (xk , yk , 0), k =
1, 2, . . . ,K , respectively. Within this notation, H0 represents
the MBS’s antenna height while HU is the height at which
the RIS-equipped UAV is flying. These are supposed to be
retrieved by the usage of the Global Positioning System

(GPS) and locally stored at the MBS. Without loss of
generality, we also assume the existence of a line-of-sight
(LoS) communication between the MBS and the UAV-RIS,
meaning that the path loss between the MBS and the UAV-
RIS can be modelled by using free-space path loss model [27]
as follow:

βm,0 =
β0

d2m,0 + (H0 − Hm)2
, m = 1, . . . ,M , (2)

where dm,0 =
√
(x0 − xm)2 + (y0 − ym)2, d0 is the reference

distance, and β0 represents the power gain of wireless
channel. In this case, Hm represents the height of the UAV
when it flies on top of the m-th cluster as explained later in
section II-E.

As regards the communication channel between the UAV-
RIS and the (m, k)-th UE as the air-to-ground (ATG)
channels, they are more complicated because of the propa-
gation blockage effects. To this end, we have the path-loss
formulation including the air-to-air (ATA) link and the air-to-
ground (ATG) link are denoted as follows [28]:

βm,k = PLm,k + ηLoSPLoSm,k + ηNLoSPNLoSm,k , (3)

Let us denote the average additional losses for the LoS and
NLoS paths as ηLoS and ηNLoS , respectively. Since we can
derive the distance path loss as

PLm,k = 10 log
(
4π fcDm,k

c

)α

, (4)

Here, we have α as the path loss exponent with the value
α ≥ 2, likely, c and fc are the speed of light in m/s unit and
the carrier frequency in Hz unit, respectively. Let us consider
the Euclidean distance from the UAV-RIS to the (m, k)-th UE
and the Euclidean distance from the MBS to the (0, k)th UE
as dm,k , then, we have Dm,k =

√
d2m,k + H

2
m. To this end,

we have the probability of LoS given as follows [29]

PLoSm,k =
1

1+ a exp
[
−b

(
arctan

(
Hm
dm,k

)
− a

)] (5)

where the values of both constants a and b depend on the
environment. Then, we can express PNLoSm,k = 1− PLoSm,k .

For the UEs that need the help of the RISs to reach the
MBS, the small-scale fading coefficients for the channels
from the (m, k)-th UE to the UAV-RIS and the UAV-RIS
to the MBS (m ∈ M, k ∈ Km), denoted by hm,k ∈

CN×1 and hHm,0 ∈ CN×L , respectively. It worth to be
noted that the coefficients are assumed as independent and
identically distributed (i.i.d.) random variables with zero
mean and unit variance, while the superscript H denotes
the conjugate transpose operation. Furthermore, we denote
Hm,k ∈ CN×1 and HH

m,0 ∈ CL×N as the channel matrix
from the (m, k)-th UE to the UAV-RIS and the UAV-RIS
to the MBS, respectively, where Hm,k =

√
βm,khm,k and

HH
m,0 =

√
βm,0hHm,0. Hence, the cascaded channel matrix of
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FIGURE 1. Illustration of a MEC system with UAV-RIS.

the link from the (m, k)-th UE to the MBS via the UAV-RIS,
Gm,k ∈ CL×1, can be shown as [23]

Gm,k = HH
m,08mHm,k , m ∈M, (6)

where 8m = diag[φ1m, φ2m, . . . , φNm] is the phase shift
matrix at the UAV-RIS; φnm = αnmejθnm with αnm ∈

[0, 1] and θnm ∈ [0, 2π ] (∀n = 1, 2, . . . ,N , m ∈ M)
denotes the reflection amplitude and phase shift of the n-
th reflecting element, respectively. Assuming that only the
phase of reflected signals is changed by the RIS reflecting
elements, then we can set αnm = 1 [30].

C. TRANSMISSION SCHEME
Since the (m, k)-th UE in the m-th group does not have a
direct link with the MBS due to propagation blockage such
as large buildings, it offloads its computing task to the MBS,
it transmits the signal to the MBS via the RIS-equipped UAV.
Hence, the signal received at the MBS from the (m, k)-th UE
can be expressed as:

ym,k =
√
Pm,kGH

m,k f m,ksm,k+

+

Km∑
l=1,l ̸=k

√
Pl,mGH

l,mf l,msl,m︸ ︷︷ ︸
intra-cell interference

+ n0, (7)

where Pm,k is the transmit power of the (m, k)-th UE;
f m,k ∈ CL×1 is the beamforming vector of the MBS with
respect to the (m, k)-th UE; sm,k is offloading information
transmitted by the (m, k)-th UE with ||sm,k ||

2
≤ 1; n0 ∼

CN (0, σ 2
0 ) is the AWGN at the MBS. The maximum transmit

power of the (m, k)-th UE is denoted as Pmaxm,k . The first
term in (7) denotes the signal transmitted from the (m, k)-
th UE via the RIS panel. On the other hand, since the
users within the same cluster are supposed to transmit to the
MBS at the same time, the second term in (7) represents the
intra-cell interference inflicted by the other UEs in the m-th
group. To overcome the interference in (7), we apply zero-
forcing (ZF) technique [31]. More specifically, we define
Gm =

[
Gm,1, . . . ,Gm,Km

]
∈ CL×Km (m = 0, 1, . . . ,M ).

As illustrated in [32] and [33], eigenvalue distribution of the
squarematrixGH

mGm ∈ CKm×Km becomesmore deterministic
as L increases. Based on this favorable propagation of the
mMIMO system, we develop a beamforming vector f m,k by
applying ZF as follows. Let

f̄ff m = Gm(GH
mGm)−1, (8)

where f̄ff m =
[
f̄ff m,1, · · · , f̄ff m,Km

]
∈ CL×Km , f̄ff m,k ∈

CL×1, m = 0, 1, . . . ,M , k ∈ Km. We then normalize
f̃ff m,k = f̄ff m,k/∥f̄ff m,k∥ and calculate f m,k as

f m,k =
√
pm,k f̃ff m,k , m = 0, 1, . . . ,M , k ∈ Km, (9)
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where pm,k is power control coefficient of the (m, k)-th UE.
Hence, the equation (7) becomes

ym,k =
√
Pm,k
√
pm,kGH

m,k f̃ff m,ksm,k + n0, (10)

where the intra-cell interference in (7) has been cancelled.
Let pm = [pm,k ]

Km
k=1 and p = [pm]Mm=0 denote the power

control coefficients, and 8 = [8m]Mm=1 denote the phase
shifts of RIS panels, the achievable throughput (in bits per
second) at the MBS with respect to the transmission of the
(m, k)-th UE can be given by

Rm,k
(
pm,k , 8m

)
= W log2

(
1+

Pm,kpm,k
∣∣GH

m,k f̃ff m,k
∣∣2

σ 2
0

)
,

(11)

whereW is the bandwidth allocated to the (m, k)-th UE.

D. OFFLOADING MODEL
In terms of computation modelling, we suppose that a
particular task of size Im,k can be executed either locally by
the (m, k)-th UE or remotely through the assistance of the
MEC server located within the MBS. To this end, we define
two models of the computation latency as detailed below.

1) LOCAL COMPUTING
Indicating with Fm,k represents the number of CPU cycles
required to compute each bit of the task by the (m, k)-th
UE, the required time to execute the task locally is obtained
as [34]:

T lm,k =
Im,kFm,k

cm,k
, m = 0, 1, . . . ,M , k ∈ Km, (12)

where cm,k denotes the maximum computing resource of the
(m, k)-th UE.

2) OFFLOADING TO MBS
On the other hand, if the task is offloaded from the (m, k)-
th UE to the MBS, we need first to take into account the
offloading transmission time expressed as [34]:

T txm,k (pm,k , 8m) =
Im,k

Rm,k
(
pm,k , 8m

) , (13)

where Rm,k
(
pm,k , 8m

)
is the communication rate expressed

in (11). Once the task reaches the MBS, the computing time
for the offloaded task at the MBS can be given as

T comm,k (ζ
bs
m,k ) =

Im,kFm,k

ζ bsm,k

, m = 0, 1, . . . ,M , k ∈ Km, (14)

where ζ bsm,k denotes the computing capacity of the MBS
allocated to process the task of the (m, k)-th UE. For
convenience, let ζm = [ζ bsm,k ]

Km
k=1 and ζ = [ζm]Mm=0 denote the

MBS computing capacity allocation. From (12)-(14), hence,
the total latency for executing the task of the (m, k)-th UE can
be written as

T totm,k (pm,k , um,k , 8m, ζ bsm,k ) = (1− um,k )T lm,k+

+ um,k

(
T txm,k (pm,k , 8m)+ T comm,k (ζ

bs
m,k )

)
. (15)

Algorithm 1 Shortest Trajectory
Require: (0, 0,Hm), (xm, ym,Hm), dmax
Ensure: T
1: Generate all the permutations of the original stops in

the sequence of {1, 2, . . . ,M} to obtain the matrix M
of M ! rows and M columns. Each permutation is a row
representing a potential solution, i.e., flight sequence or
a trajectory.

2: for each rowR inM do
3: Compute the distance d from the UAV to the final stop
4: if d < dmax then
5: T ← R
6: dmax = d
7: end if
8: end for

Note that we can ignore the time required for transmitting the
computation results from theMBS back to the UEs since such
latency is much less than the total latency for executing the
task [34], [35].

E. CLUSTERS CREATION AND UAV TRAJECTORY
In terms of cluster creation and relative flying path opti-
mization for the UAV we used an approach similar to the
one provided in our previous work presented in [36] . More
specifically, the creation of the clusters is based on the UE
channel gains. Once the clusters are created, in order to save
energy, the UAV will fly from its original position (0, 0,H0)
to the closest cluster center within a straight line. Once it
reaches the cluster center, it adjusts its flying height Hm
within the range (Hmin,Hmax) in order to satisfy the QoS
requirements as illustrated in our previous work (see Eq (22)
of [36].

III. PROBLEM FORMULATION AND PROPOSED
APPROACH
For the UAV-RIS assisted MEC model illustrated in Sec-
tion II, we formulated an optimisation problem aimed at
minimizing the total latency for executing the tasks of all the
users in the considered area. This will be achieved through the
joint optimisation of all the most relevant system variables,
i.e., the power allocated by each user (p), user association (u),
phase shift matrix of the RIS (8), and computing resource
allocation at the MBS (ζ ) subject to the MBS computing
resource constraints and QoS requirements. More in detail,
such optimisation problem is formulated as follows:

min
p,u,8,ζ

M∑
m=0

Km∑
k=1

T totm,k

(
pm,k , um,k , 8m, ζ bsm,k

)
(16a)

s.t. 0 ≤ pm,k ≤ 1, (16b)

Rm,k
(
pm,k , 8m

)
≥ r̄0, m = 0, 1, . . . ,M , k ∈ Km,

(16c)

0 ≤ θnm ≤ 2π,∀n = 1, 2, . . . ,N , m ∈M, (16d)
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Km∑
k=1

um,kζ
bs
m,k ≤ ζmax , (16e)

where um,k represents the user association coefficient as
defined in (1). As regards the other constraints, (16b)
represents the range of the power that can be used by each
user, while (16c) the QoS requirements of each user in terms
of minimum achievable uplink rate r̄0. On the other hand, the
value range of each RIS phase-shift coefficient is expressed
through constraint (16d). Finally, (16e) reflects the limit of
computing resources at the MEC server that can be allocated
at each UE.

Due to the non-convexity of such sum-latency mini-
mization problem, we proposed a three-step optimisation
framework that firstly finds the optimal value of power
coefficient for a fixed value for RIS coefficients, ζ and u.
Subsequently, we formulate another optimisation problem
aimed at finding the optimal value of the phase-shift
coefficient at RIS. Finally, the optimal value for ζ is obtained.
All the optimisation steps, described within the subsequent
subsections, are repeated at each iteration until a stop
condition is met (see Algorithm 4).

A. OPTIMAL POWER ALLOCATION
For any given u, 8, ζ , the original problem (16) can be
reformulated as follow:

min
p

M∑
m=0

Km∑
k=1

T totm,k
(
pm,k

)
s.t. (16b), (16c). (17a)

To solve this new problem with make use of the following
inequality [37], [38]:

f (x) = log2(1+
1
x
) ≥ f̂ (x), (18)

where f̂ (x) is defined as follow:

f̂ (x) = log2(1+
1
x̄
)+

(
∂f (x̄)
∂x

)
(x − x̄)

= log2
(
1+

1
x̄

)
+

1
1+ x̄

−
x

(1+ x̄)x̄
. (19)

To this end, it is worth mentioning that (18) holds ∀x > 0 and
∀x̄ > 0. In our case, at the i-th iteration of Algorithm 2, both
x and x̄ are represented by the following quantities: WW

x =
σ 2
0

Pm,kpm,k
∣∣GH

m,k f̃ff m,k
∣∣2 ,

x̄ = x(i) =
σ 2
0

Pm,kp
(i)
m,k

∣∣GH
m,k f̃ff m,k

∣∣2 ,

These are used for approximating the throughput of each
(m, k)-th UE as follows:

Rm,k
(
pm,k

)
≥ R̂(i)m,k

(
pm,k

)
, ∀m ∈M, ∀k ∈ Km, (20)

with

R̂(i)m,k

(
pm,k

)
= W

(
log2

(
1+

1
x̄

)
+

1
1+ x̄

−
x

(1+ x̄)x̄

)
.

(21)

Subsequently, by introducing a new variables r ≜ {rm,k}

(∀m ∈M,∀k ∈ K), that satisfies the condition 1
Rm,k (pm,k )

≤

rm,k , we can provide the following upper-bound for the
objective function T totm,k

(
rm,k

)
:

T totm,k
(
rm,k

)
≤ T̂ totm,k

(
rm,k

)
= (1− um,k )T lm,k + um,k

(
rm,kIm,k + T comm,k

)
.

(22)

As a result, we can rewrite the problem (17) as

min
p,r

M∑
m=0

Km∑
k=1

T̂ totm,k
(
rm,k

)
(23a)

s.t. pm,k ≤ 1, Pm,k ≤ Pmax , (23b)

R̂(i)m,k

(
pm,k

)
≥ r̄0, (23c)

1

R̂(i)m,k

≤ rm,k , m = 0, 1, . . . ,M , k ∈ Km, (23d)

Consequently, problem (23) is now in the form of a
standard convex optimisation problem that can be efficiently
solved by using convex optimisation solvers like CVX
[39]. The proposed power allocation procedure for solving
problem (23) is summarised in Algorithm 2.

Algorithm 2 Optimal Power Allocation Procedure for
Solving Problem (23)
Input:
Set u, 8, ζ and initial point p(0);
Set the tolerance ε = 10−3, the maximum iterations

Imax = 20 to stop the algorithm;
for m = 1 to M do
Set i = 0
repeat

Solve problem (23) for the feasible solution (p(i+1));
Set i = i+ 1;

until Convergence or i > Imax ;
end for
Output: Optimal power control coefficients (p∗)

B. PHASE SHIFT OPTIMISATION
At this stage, we use the values of p obtained through
Algorithm 2, while u, and ζ have the same original value set
during the power resource optimisation. Then, for these fixed
values problem (16) can be rewritten as:

min
8

M∑
m=0

Km∑
k=1

T totm,k (8m) (24a)

s.t. (16c), (16d). (24b)
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In this case, for a given beamforming vector (f m,k , ∀n =
1, 2, . . . ,N , m ∈ M) at the MBS, the main objective will
be to search the optimal set of phase-shift coefficients for
the RIS. Indicating the vector of phase-shift coefficients as
νm = [ν1m, . . . , νNm ]

H with νnm = ejθnm (∀n = 1, 2, . . . ,N ),
one can easily notice that the constraint (16d) is equivalent to
the unit-modulus constraint i.e., |νnm|

2
= 1 [40]. At this stage,

by defining the new variables χm,k = diag(HH
m,0)Hm,k f̃ff m,k ,

that leads to HH
m,08mHm,k f̃ff m,k = νHm χm,k , and by also

applying the approximation as in (20)-(21), we can define the
following inequality:

Rm,k (8m) ≥ R̃(i)m,k (8m) , ∀m ∈M, ∀k ∈ Km, (25)

where

R̃(i)m,k (8m) = W
(
log2

(
1+

1
ȳ

)
+

1
1+ ȳ

−
y

(1+ ȳ)ȳ

)
,

y =
σ 2
0

Pm,kpm,k
∣∣νHm χm,k

∣∣2 ,

ȳ = y(i) =
σ 2
0

Pm,kpm,k
∣∣νHm (i)χm,k

∣∣2 .

In addition, by the mean of introducing a new variable
r̃ ≜ {r̃m,k} (∀m ∈ M,∀k ∈ K), that satisfies

1
Rm,k (8m)

≤ r̃m,k , the objective function T totm,k

(
r̃m,k

)
can be

upper-bounded as:

T totm,k
(
r̃m,k

)
≤ T̃ totm,k

(
r̃m,k

)
=

= (1− um,k )T lm,k + um,k
(
r̃m,kIm,k + T comm,k

)
. (26)

As result, problem (24) can be reformulated as follow:

min
νm, r̃, m∈M

M∑
m=0

Km∑
k=1

T̃ totm,k
(
r̃m,k

)
(27a)

s.t. νHm χm,kχ
H
m,kνm ≥

(
2r̄0 − 1

)
/ak , m ∈M, k ∈ Km,

(27b)

|νnm|
2
= 1,∀n = 1, 2, . . . ,N , m ∈M, (27c)

1

R̃(i)m,k

≤ r̃m,k , m = 0, 1, . . . ,M , k ∈ Km (27d)

where the constraint (27b) is equivalent to (16c), and ak =
Pm,kpm,k/σ

2
0 . However, the new optimisation problem (27)

is still a non-convex quadratically constrained quadratic
programming (QCQP) problem. To obtain a more easy
formulation, we introduce additional transformations. More
specifically, we define Xm,k = χm,kχ

H
m,k and νHmXm,kνm =

tr
(
Xm,kνmνHm

)
= tr

(
Xm,kVm

)
where Vm = νmνHm must

satisfy Vm ⪰ 0 and rank(Vm)=1 [40], [41]. These allow
us to obtain the following equivalent transformation for
problem (27):

min
νm, r̃, m∈M

M∑
m=0

Km∑
k=1

T̃ totm,k
(
r̃m,k

)
(28a)

s.t. tr
(
Xm,kVm

)
≥

(
2r̄0 − 1

)
/ak , m ∈M, k ∈ Km,

(28b)

Vm(n,n) = 1,∀n = 1, 2, . . . ,N , m ∈M, (28c)

Vm ⪰ 0, (28d)
1

R̃(i)m,k

≤ r̃m,k , m = 0, 1, . . . ,M , k ∈ Km, (28e)

with y =
σ 2
0

Pm,kpm,k tr(Xm,kVm)
. As one can easily notice,

problem (28) is a convex semi-definite program (SDP) [40],
[42], and then easy to solve by using CVX. The entire Block
Coordinate Descent (BCD)-based procedure for phase shift
searching is summarized in Algorithm 3.

Algorithm 3 Phase Shift Searching Procedure for Solving
Problem (28)
Input:
Set u, ζ , p, and initial f (0)m,k .
Set the tolerance ε = 10−3, the maximum iterations

Imax = 20 to stop the algorithm.
for m = 1 to M do
Set i = 0
repeat

Solve problem (28) for the feasible solution (8(i+1)
m ).

Update f (i+1)m,k .
Set i = i+ 1.

until Convergence or i > Imax .
end for
Output: Optimal phase shift (8∗M )

C. COMPUTATION OFFLOADING OPTIMISATION
Finally, using the optimal values of p,u, 8 obtained through
the optimisation steps described in the previous subsec-
tion, we obtain the following optimisation problem with
respect to ζ :

min
ζ

M∑
m=0

Km∑
k=1

T totm,k

(
ζ bsm,k

)
(29a)

s.t. (16e),

which can also be easily through CVX since both the
objective function and constraint (16e) are both convex with
respect to ζ .

D. ITERATIVE OPTIMISATION ALGORITHM
Finally, we propose an iterative optimisation problem to
jointly identify the optimal power allocation, phase shift
searching, and computation offloading. The entire optimisa-
tion process is summarised in Algorithm 4 showing all the
optimisation flow where the solution in each iteration is the
initial point in the next iteration.
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FIGURE 2. Convergence of the proposed optimization framework when
changing the number of user K in the communication scenario.

Algorithm 4 Iterative Optimisation Algorithm for Jointly
Solving Problem (16)

Input:
Set u, 8, ζ and initial point p(0), f (0)m,k , ζ

(0);
Set the tolerance ε = 10−3, the maximum iterations

Imax = 20 to stop the algorithm;
Set j = 0
repeat

Solve problem (23) for the feasible solution (p(j+1));
Solve problem (28) for the feasible solution (f (j+1)m,k );
Solve problem (29) for the feasible solution (ζ (j+1));
Set j = j+ 1;

until Convergence or j > Imax ;
Output: (p∗, f ∗m,k , ζ

∗)

IV. SIMULATION RESULTS
This section provides the performance evaluations in terms of
convergence of the proposed optimisation framework, as well
as in term of the latency minimization when compared with
other conventional scheme where only optimal resource allo-
cation at the MEC server is performed, i.e., neither optimal
power allocation nor phase-shift coefficients optimisation
for the RIS is performed. To carry out these performance
evaluations we considered the following parameters. The
MBS is supposed to be placed at the center of a circular area
and provide service to users located within 500 m distance
through a direct connection. In addition, it is also assumed
that there is a need to serve users distant up to 2000 m
from the MBS. Within such a scenario, the 3D Cartesian
coordinates of the MBS are (0, 0, 30), while all the UEs are
randomly distributed within the whole area. As regards the
RIS-equipped UAV, it is supposed to fly within this area and
an altitude range (Hmin,Hmax) set to (50, 150) m. In terms
of physical transmission parameters, in addition to the ones
adopted in [37], it is assumed that each UE can use up

to Pmaxm,k = 30 dBm for the uplink transmissions over a
communication channel with central frequency fc = 2.4
GHz, bandwidth W = 1 MHz, and subject to white noise
spectral density σ 2

0 = −130 dBm/Hz. In terms of QoS
requirements, the minimum achievable rate for each UE in
uplink is set to r̄0 = 1 Mbps. In terms of task computing,
we assume that each UE needs to perform task computing,
either locally or at the MBS, with a size of Dm = 100 kB and
inner computation complexity of Fm,k = 600 cycles/bit. The
maximum computing resource (CPU cycle frequency) of the
MEC server and the UEs are ζmax = 30 Giga cycles/s and
cm,k = 0.5 Giga cycles/s, respectively [43].

Under these assumptions, we evaluate the performance of
our proposed optimisation framework, when compared with
the conventional scheme detailed above, in terms of:
• Capability of reducing the total network latency, which
is defined as

∑M
m=0

∑Km
k=1 T

tot
m,k .

• Ability of reducing the worst-case total latency defined
as
∑M

m=0 max
k∈Km
{T totm,k}.

A. CONVERGENCE ANALYSIS
The convergence characteristics of the proposed optimization
framework have been evaluated by changing the number
of users considered within the communication scenario.
This is because, an increase in the number of users,
corresponds to an increase in the variables to optimize,
i.e., the number of clusters, power coefficients at the MBS,
optimal sets of phase-shift coefficients, and computation
optimal computation policy at the MEC server.

As illustrated in Figure 2 the proposed optimization frame-
work requires only a few iterations to solve the optimization
problem in line with Algorithm 4. More specifically, when
K = 80 or K = 100 the algorithm converges after
3 iterations, while it requires more iterations when K =
120. This is because, as stated before, an increase in users
corresponds to an increase in the optimization variables,
which in turn requires more time for the algorithm to
converge.

On the other hand, one can easily notice how an increase
in the number of users also corresponds to an increase in the
total latency for the worst-case user. This can be explained by
the fact that, for a fixed amount of communication resources
at theMBS and computation resources at theMEC, the higher
the number of users that offload their tasks to theMEC server,
the lower the resources that will be allocated to each user,
requiring then more time at the MEC server receive the task,
complete it and transmit back to the user. These aspects will
be more evident in the next subsections.

B. THE WORST-CASE LATENCY VS COMPUTATION
COMPLEXITY FM,K
In Figure 3, we demonstrate the total network latency of
all UEs for different values of Fm,k , with K = 80 and
ζmax = 30 Giga cycles/s. The total latency is evaluated with
difference values of CPU cycles, Fm,k , ranging from 600 to
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FIGURE 3. The total network latency according to different resource
allocation schemes versus a range of Fm,k , with K = 80 and ζmax = 30
Giga cycles/s.

602 cycles/bit, while the number of reflecting elements of RIS
is N = 80 and N = 100, respectively.

Particularly, Figures 3(a) and 3(b) show the outperfor-
mance of the proposed method compared with the conven-
tional scheme in terms of the total network latency. For
instance, with N = 80 andFm,k = 600, the total latency with
the proposed scheme and the conventional scheme is 5.632×
104 ms and 5.635×104 ms, respectively.Moreover, the higher
the number of reflecting elements, the lower the total network
latency. To this end, it is worth mentioning that these results
are valid for the range of considered reflective elements and
do not represent a general rule [44] Furthermore, in Figure 4,
we evaluate the total worst-case latency with different values
of CPU cycles, Fm,k . From the figure, we can observe that
the total worst-case latency increases with the number of
CPU cycles required to compute each bit of the task, i.e., the
task complexity. Hence, the UEs should offload their local
computing tasks to the MEC server to reduce the latency.
By making jointly optimal power allocation, phase shift, and
computation offloading, the proposed scheme can provide a
better performance than the conventional scheme in terms of
the total worst-case latency. On the other hand, when Fm,k

FIGURE 4. The total worst-case latency according to different resource
allocation schemes versus a range of Fm,k , with K = 80 and ζmax = 30
Giga cycles/s.

increases from 600 to 602 Giga cycles/s, with N = 80, the
total worst-case latency with the proposed scheme goes up
from approximately 3997ms to 4001mswhilewithN = 100,
the total worst-case latency rises from some 3953 ms to
3958 ms, respectively. This again confirms that, increasing
the number of RIS elements within the considered range,
provides improvements in the system performance in terms
of reduced latency.

C. THE WORST-CASE LATENCY VS COMPUTATION
CAPABILITIES ζMAX
In Figure 5, we evaluate the total network latency with
the proposed scheme in comparison with the conventional
scheme for a range of computing capacity of MBS (Mega
cycles/s), ζmax . The number of UEs and CPU cycles is set
at K = 80 and Fm,k = 600 cycles/bit, respectively.
Specifically, Figure 5 shows how an increase in the number of
RIS elements and the computing capacity of MBS improves
the total network latency. As observed from Figure 5, the total
latency goes down remarkably with the computing capacity
of MBS, ζmax . For example, with N = 80, when the
computing capacity of MBS increases from 4.5 × 104 to
4.53 × 104, the total latency reduces from 1.826 × 104 to
1.816 × 104. On the other hand, in Figure 6, we prove the
benefits of the proposed method for UAV-RIS aided MEC
system in terms of the total worst-case latency. It can be
seen that, in general, the total worst-case latency declines
significantly with the increase of the computing capacity.
Most importantly, the proposed scheme always achieves a
better latency performance than that of the benchmark. This
again proves the efficiency of the proposed optimisation
scheme i.e., jointly optimal power allocation, phase shift, and
computation offloading for the UAV-RIS aided MEC system.

D. EXPERIMENTAL SUMMARY
In light of illustrations and relative discussions provided
in subsections IV-B and IV-C, one can easily notice how
the proposed optimization scheme is able to reach higher
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FIGURE 5. The total network latency according to different resource
allocation schemes versus various values of ζmax , with K = 80 and
Fm,k = 600 cycles/bit.

performances in terms of reduced network latency when
compared with a conventional transmission scheme where
neither optimal power allocation at the MBS nor phase-
shift coefficients optimisation for the RIS is performed.
Indeed, the proposed optimization scheme has been tested
within different configurations obtained by varying the main
influential parameters of the considered communication
scenarios such as the number of reflective elements N at the
RIS panel and the computation complexity of the task Fm,k
required by each user, and the CPU frequency at the MEC
server ζmax . Based on the obtained results we can summarize
the main key point of this study as follows:
• In all the considered scenarios, the proposed optimiza-
tion framework can find the optimal configurations of
power allocation at theMBS and phase-shift coefficients
for the RIS, as well as optimal path for the UAV, that
permits to obtain lower levels of communication latency,
while guaranteeing the QoS requirements for each user
in the network.

FIGURE 6. The total worst-case latency according to different resource
allocation schemes versus various values of ζmax , with K = 80 and
Fm,k = 600 cycles/bit.

• There is clear evidence that the communication latency
increases when the task complexity Fm,k increases,
while it decreases with an increase of either the number
N of RIS elements or CPU frequency at the MEC
server ζmax increases. In any case cases, the proposed
framework can provide the optimal resource allocation
which minimizes the overall communication latency.

• For the considered scenario, the proposed optimization
framework can provide lower levels of communication
latency also for the worst-case user. This highlights the
importance of how the usage of UAV equipped with
RIS panels and joint optimization of UAV path, power
allocation at the MBS, and phase-shift coefficients for
the reflective elements represents a powerful solution to
foster the deployment of 6G-oriented services with low-
latency requirements.

The obtained results represent then a clear contribution to
the current state of the art of 6G-based communication and
services.

V. CONCLUSION
In this paper, we have proposed an MEC system hosted
within a massive MIMO base station, serving M groups of
users with the assistance of RIS-equipped UAV to enhance
the coverage of the whole communication system. For
such a communication scenario, we have considered the
optimization problem of minimising the total latency for
executing tasks of all UEs in the proposed system. More
specifically, we have formulated the min-sum latency of all
UEs by jointly optimising the user power allocation, user
association, phase shift of reflecting elements of RIS, and
computing allocation at the MBS subject to the QoS, and the
MBS computing capacity. Additionally, we have designed the
trajectory for UAV to save total fly time throughout M stops
associated with M clusters of UEs for task offloading. The
effectiveness of the proposed scheme has been demonstrated
through numerical simulations, which highlighted how the
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proposed scheme outperforms in terms of reducing the total
network latency and the total worst-case latency of all UEs
when compared with the conventional scheme. In the future,
we plan to investigate the jittering effect of UAVs and extend
to multiple UAVs in Internet of Things scenarios. Last but
not least, we are also planning to design an optimization
algorithm aimed at finding the optimal number of clusters
and UAV-related trajectory to minimize the communication
latency and save energy on the UAV side.

REFERENCES
[1] IMT Traffic Estimates for the Years 2020 to 2030, document ITU-

R M.2370-0, Jul. 2015.
[2] W. Jiang, B. Han, M. A. Habibi, and H. D. Schotten, ‘‘The road towards

6G: A comprehensive survey,’’ IEEE Open J. Commun. Soc., vol. 2,
pp. 334–366, 2021.

[3] H. Viswanathan and P. E. Mogensen, ‘‘Communications in the 6G era,’’
IEEE Access, vol. 8, pp. 57063–57074, 2020.

[4] W. Saad, M. Bennis, and M. Chen, ‘‘A vision of 6G wireless systems:
Applications, trends, technologies, and open research problems,’’ IEEE
Netw., vol. 34, no. 3, pp. 134–142, May 2020.

[5] F. Guo, F. R. Yu, H. Zhang, X. Li, H. Ji, and V. C. M. Leung, ‘‘Enabling
massive IoT toward 6G: A comprehensive survey,’’ IEEE Internet Things
J., vol. 8, no. 15, pp. 11891–11915, Aug. 2021.

[6] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, ‘‘Mobile edge computing:
A survey,’’ IEEE Internet Things J., vol. 5, no. 1, pp. 450–465, Feb. 2018.

[7] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang, ‘‘A
survey on mobile edge networks: Convergence of computing, caching and
communications,’’ IEEE Access, vol. 5, pp. 6757–6779, 2017.

[8] D.-B. Ha, V.-T. Truong, and Y. Lee, ‘‘Performance analysis for RF energy
harvesting mobile edge computing networks with SIMO/MISO-NOMA
schemes,’’ EAI Endorsed Trans. Ind. Netw. Intell. Syst., vol. 8, no. 27,
Jun. 2021, Art. no. 169425.

[9] L. Lu, G. Y. Li, A. L. Swindlehurst, A. Ashikhmin, and R. Zhang,
‘‘An overview of massive MIMO: Benefits and challenges,’’ IEEE J. Sel.
Topics Signal Process., vol. 8, no. 5, pp. 742–758, Oct. 2014.

[10] I. Ahmed, H. Khammari, A. Shahid, A. Musa, K. S. Kim, E. De Poorter,
and I. Moerman, ‘‘A survey on hybrid beamforming techniques in 5G:
Architecture and system model perspectives,’’ IEEE Commun. Surveys
Tuts., vol. 20, no. 4, pp. 3060–3097, 4th Quart., 2018.

[11] A. Masaracchia, Y. Li, K. K. Nguyen, C. Yin, S. R. Khosravirad,
D. B. D. Costa, and T. Q. Duong, ‘‘UAV-enabled ultra-reliable low-latency
communications for 6G: A comprehensive survey,’’ IEEE Access, vol. 9,
pp. 137338–137352, 2021.

[12] S. Basharat, S. A. Hassan, H. Pervaiz, A. Mahmood, Z. Ding, and
M. Gidlund, ‘‘Reconfigurable intelligent surfaces: Potentials, applications,
and challenges for 6G wireless networks,’’ IEEE Wireless Commun.,
vol. 28, no. 6, pp. 184–191, Dec. 2021.

[13] Y. Li, C. Yin, T. Do-Duy, A. Masaracchia, and T. Q. Duong, ‘‘Aerial
reconfigurable intelligent surface-enabled URLLC UAV systems,’’ IEEE
Access, vol. 9, pp. 140248–140257, 2021.

[14] K. K. Nguyen, A. Masaracchia, V. Sharma, H. V. Poor, and T. Q. Duong,
‘‘RIS-assisted UAV communications for IoT with wireless power transfer
using deep reinforcement learning,’’ IEEE J. Sel. Topics Signal Process.,
vol. 16, no. 5, pp. 1086–1096, Aug. 2022.

[15] K. K. Nguyen, A. Masaracchia, and C. Yin, ‘‘Deep reinforcement learning
for intelligent reflecting surface-assisted D2D communications,’’ EAI
Endorsed Trans. Ind. Netw. Intell. Syst., vol. 10, no. 1, p. e1, Jan. 2023.

[16] M. T. Nguyen, E. Garcia-Palacios, T. Do-Duy, O. A. Dobre, and
T. Q. Duong, ‘‘UAV-aided aerial reconfigurable intelligent surface com-
munications with massive MIMO system,’’ IEEE Trans. Cognit. Commun.
Netw., vol. 8, no. 4, pp. 1828–1838, Dec. 2022.

[17] T. Do-Duy, D. V. Huynh, E. Garcia-Palacios, T.-V. Cao, V. Sharma, and
T. Q. Duong, ‘‘Joint computation and communication resource allocation
for unmanned aerial vehicle NOMA systems,’’ in Proc. IEEE 28th
Int. Workshop Comput. Aided Modeling Design Commun. Links Netw.
(CAMAD), Edinburgh, U.K., Nov. 2023, pp. 1–6.

[18] Y. Wang, J. Niu, G. Chen, X. Zhou, Y. Li, and S. Liu, ‘‘RIS-aided latency-
efficient MECHetNet with wireless backhaul,’’ IEEE Trans. Veh. Technol.,
vol. 73, no. 6, pp. 8705–8719, Jun. 2024.

[19] Y. Xu, T. Zhang, Y. Zou, and Y. Liu, ‘‘Reconfigurable intelligence surface
aided UAV-MEC systems with NOMA,’’ IEEE Commun. Lett., vol. 26,
no. 9, pp. 2121–2125, Sep. 2022.

[20] H. Hu, Z. Sheng, A. A. Nasir, H. Yu, and Y. Fang, ‘‘Computation capacity
maximization for UAV and RIS cooperative MEC system with NOMA,’’
IEEE Commun. Lett., vol. 28, no. 3, pp. 592–596, Mar. 2024.

[21] Z. Zhai, X. Dai, B. Duo, X. Wang, and X. Yuan, ‘‘Energy-efficient UAV-
mounted RIS assisted mobile edge computing,’’ IEEE Wireless Commun.
Lett., vol. 11, no. 12, pp. 2507–2511, Dec. 2022.

[22] Z. Chu, P. Xiao, M. Shojafar, D. Mi, J. Mao, and W. Hao, ‘‘Intelligent
reflecting surface assisted mobile edge computing for Internet of Things,’’
IEEE Wireless Commun. Lett., vol. 10, no. 3, pp. 619–623, Mar. 2021.

[23] Q. Wu and R. Zhang, ‘‘Beamforming optimization for wireless network
aided by intelligent reflecting surface with discrete phase shifts,’’ IEEE
Trans. Commun., vol. 68, no. 3, pp. 1838–1851, Mar. 2020.

[24] P. Wang, J. Fang, X. Yuan, Z. Chen, and H. Li, ‘‘Intelligent reflect-
ing surface-assisted millimeter wave communications: Joint active and
passive precoding design,’’ IEEE Trans. Veh. Technol., vol. 69, no. 12,
pp. 14960–14973, Dec. 2020.

[25] T. J. Cui,M.Q.Qi, X.Wan, J. Zhao, andQ. Cheng, ‘‘Codingmetamaterials,
digital metamaterials and programmable metamaterials,’’ Light: Sci. Appl.,
vol. 3, no. 10, p. e218, Oct. 2014.

[26] H. Taghvaee, A. Cabellos-Aparicio, J. Georgiou, and S. Abadal, ‘‘Error
analysis of programmable metasurfaces for beam steering,’’ IEEE J.
Emerg. Sel. Topics Circuits Syst., vol. 10, no. 1, pp. 62–74, Mar. 2020.

[27] M.-N. Nguyen, L. D. Nguyen, T. Q. Duong, and H. D. Tuan, ‘‘Real-time
optimal resource allocation for embedded UAV communication systems,’’
IEEE Wireless Commun. Lett., vol. 8, no. 1, pp. 225–228, Feb. 2019.

[28] M.Mozaffari, W. Saad, M. Bennis, andM. Debbah, ‘‘Efficient deployment
of multiple unmanned aerial vehicles for optimal wireless coverage,’’ IEEE
Commun. Lett., vol. 20, no. 8, pp. 1647–1650, Aug. 2016.

[29] A. Al-Hourani, S. Kandeepan, and S. Lardner, ‘‘Optimal LAP altitude
for maximum coverage,’’ IEEE Wireless Commun. Lett., vol. 3, no. 6,
pp. 569–572, Dec. 2014.

[30] X. Xie, F. Fang, and Z. Ding, ‘‘Joint optimization of beamforming, phase-
shifting and power allocation in a multi-cluster IRS-NOMA network,’’
IEEE Trans. Veh. Technol., vol. 70, no. 8, pp. 7705–7717, Aug. 2021.

[31] H. Q. Ngo, M. Matthaiou, T. Q. Duong, and E. G. Larsson, ‘‘Uplink
performance analysis of multicell MU-SIMO systems with ZF receivers,’’
IEEE Trans. Veh. Technol., vol. 62, no. 9, pp. 4471–4483, Nov. 2013.

[32] A. Tulino and S. Verdú, Random Matrix Theory and Wireless Communi-
cations. Delft, The Netherlands: Now Publishers Inc., 2004.

[33] L. D. Nguyen, H. D. Tuan, T. Q. Duong, and H. V. Poor, ‘‘Beamforming
and power allocation for energy-efficient massive MIMO,’’ in Proc. 22nd
Int. Conf. Digit. Signal Process. (DSP), Aug. 2017, pp. 1–5.

[34] Y. Zhou, P. L. Yeoh, C. Pan, K. Wang, M. Elkashlan, Z. Wang, B. Vucetic,
and Y. Li, ‘‘Offloading optimization for low-latency secure mobile
edge computing systems,’’ IEEE Wireless Commun. Lett., vol. 9, no. 4,
pp. 480–484, Apr. 2020.

[35] J. Xu and J. Yao, ‘‘Exploiting physical-layer security for multiuser
multicarrier computation offloading,’’ IEEE Wireless Commun. Lett.,
vol. 8, no. 1, pp. 9–12, Feb. 2019.

[36] T. Do-Duy, L. D. Nguyen, T. Q. Duong, S. R. Khosravirad, and
H. Claussen, ‘‘Joint optimisation of real-time deployment and resource
allocation for UAV-aided disaster emergency communications,’’ IEEE J.
Sel. Areas Commun., vol. 39, no. 11, pp. 3411–3424, Nov. 2021.

[37] L. D. Nguyen, H. D. Tuan, T. Q. Duong, O. A. Dobre, and H. V. Poor,
‘‘Downlink beamforming for energy-efficient heterogeneous networks
with massive MIMO and small cells,’’ IEEE Trans. Wireless Commun.,
vol. 17, no. 5, pp. 3386–3400, May 2018.

[38] L. D. Nguyen, H. D. Tuan, T. Q. Duong, and H. V. Poor, ‘‘Multi-user
regularized zero-forcing beamforming,’’ IEEE Trans. Signal Process.,
vol. 67, no. 11, pp. 2839–2853, Jun. 2019.

[39] M. Grant and S. Boyd. (Mar. 2014). CVX: MATLAB Software for
Disciplined Convex Programming, Version 2.1. [Online]. Available:
http://cvxr.com/cvx

[40] Q. Wu and R. Zhang, ‘‘Intelligent reflecting surface enhanced wireless
network via joint active and passive beamforming,’’ IEEE Trans. Wireless
Commun., vol. 18, no. 11, pp. 5394–5409, Nov. 2019.

[41] H. Yu, H. D. Tuan, A. A. Nasir, T. Q. Duong, and H. V. Poor, ‘‘Joint design
of reconfigurable intelligent surfaces and transmit beamforming under
proper and improper Gaussian signaling,’’ IEEE J. Sel. Areas Commun.,
vol. 38, no. 11, pp. 2589–2603, Nov. 2020.

107982 VOLUME 12, 2024



P. Q. Truong et al.: Computation Offloading and Resource Allocation Optimization

[42] Q. Wu and R. Zhang, ‘‘Intelligent reflecting surface enhanced wireless
network: Joint active and passive beamforming design,’’ in Proc. IEEE
Global Commun. Conf. (GLOBECOM), Dec. 2018, pp. 1–6.

[43] T. Liu, L. Tang, W. Wang, Q. Chen, and X. Zeng, ‘‘Digital-twin-assisted
task offloading based on edge collaboration in the digital twin edge
network,’’ IEEE Internet Things J., vol. 9, no. 2, pp. 1427–1444, Jan. 2022.

[44] D. Tyrovolas, P.-V. Mekikis, S. A. Tegos, P. D. Diamantoulakis,
C. K. Liaskos, and G. K. Karagiannidis, ‘‘Energy-aware design of UAV-
mounted RIS networks for IoT data collection,’’ IEEE Trans. Commun.,
vol. 71, no. 2, pp. 1168–1178, Feb. 2023.

PHUC Q. TRUONG was born in Can Tho
City, Vietnam. He received the B.Eng. degree
in electronics and telecommunication engineering
and the M.Eng. degree in electronics engineering
from Ho Chi Minh City University of Technology
and Education, Vietnam, in 2011 and 2014,
respectively, where he is currently pursuing the
Ph.D. degree with the Faculty of Electrical and
Electronics Engineering. He is also a Senior Lec-
turer with the Faculty of Electrical and Electronics

Engineering, HoChiMinhCityUniversity of Technology and Education. His
research interests include convex optimization techniques, heterogeneous
networks, the Internet of Things, and intelligent reflecting surfaces (IRS).

TAN DO-DUY (Member, IEEE) received the B.S.
degree from the HCMC University of Technology,
Ho Chi Minh City, Vietnam, in 2010, the M.S.
degree from the Kumoh National Institute of
Technology, Gumi, South Korea, in 2013, and
the Ph.D. degree from the Autonomous Univer-
sity of Barcelona, Barcelona, Spain, in 2019.
He is currently a Lecturer with the Department
of Computer and Communication Engineering,
Ho Chi Minh City University of Technology and

Education, Vietnam. His main research interests include wireless cooperative
communications and network coding applications for wireless networking.

ANTONINO MASARACCHIA (Senior Member,
IEEE) was a Research Fellow with Queens Uni-
versity Belfast, U.K. He is currently a Lecturer
with the Queen Mary University of London.
His research interests include 6G networks, dig-
ital twin, generative AI and applied machine
learning techniques to wireless communications,
reconfigurable intelligent surfaces (RIS), UAV-
enabled networks, and ultra-reliable low-latency
communications (URLLC).

NGUYEN-SON VO (Senior Member, IEEE)
received the Ph.D. degree in communication and
information systems from the Huazhong Univer-
sity of Science and Technology, China, in 2012.
He is currently with the Institute of Fundamental
and Applied Sciences, Duy Tan University, Ho Chi
Minh City, Vietnam. His research interests include
self-powered multimedia wireless communica-
tions, quality of experience provision in wireless
networks for smart cities, and the IoT for disaster

and environment management. He received the Best Paper Award from the
IEEE Global Communications Conference, in 2016; and the Prestigious
Newton Prize, in 2017. He has been serving as an Associate Editor for IEEE
COMMUNICATIONS LETTERS, since 2019; and a Guest Editor for Physical Com-
munication (Elsevier), Special Issue on Mission Critical Communications
and Networking for Disaster Management, in 2019; IET Communications,
Special Issue on Recent Advances on 5G Communications, in 2018;
Mobile Networks and Applications (Springer), Special Issues on The Key
Trends in B5G Technologies, Services and Applications, in 2021; Wireless
Communications and Networks for 5G and Beyond, in 2018; and Wireless
Communications and Networks for Smart Cities, in 2017.

VAN-CA PHAN received the Ph.D. degree in
electronics and radio engineering fromKyung Hee
University, Republic of Korea, in 2010. He is cur-
rently an Associate Professor with the Department
of Computer and Communications Engineering,
Faculty of Electrical and Electronics Engineering,
Ho Chi Minh City University of Technology
and Education, Vietnam. His diverse research
interests include wireless and mobile communi-
cation networks, heterogeneous networks, game

theory, machine learning, reinforcement learning, dynamic programming
techniques, the Internet of Things, cyber-physical systems, and embedded
systems design, with a particular focus on optimization techniques for
wireless and mobile communications.

DAC-BINH HA received the B.S. degree in radio
techniques and the M.S. and Ph.D. degrees in
communications and information systems from the
Huazhong University of Science and Technology
(HUST), China, in 1997, 2006, and 2009, respec-
tively. He is currently an Associate Professor with
the School of Engineering and Technology, Duy
Tan University, Da Nang, Vietnam. His research
interests include secure physical layer commu-
nications, cooperative communications, cognitive

radio, RF energy harvesting networks, B5G/6G networks, mobile edge
computing, and quantum computing and communications.

TRUNG Q. DUONG (Fellow, IEEE) is currently
a Canada Excellence Research Chair (CERC)
and a Full Professor with the Memorial Uni-
versity of Newfoundland, Canada. He is also
an Adjunct Chair Professor in telecommunica-
tions with Queen’s University Belfast, U.K., and
the Research Chair of the Royal Academy of
Engineering, U.K. His current research interests
include quantum communications, wireless com-
munications, signal processing, machine learning,

and real-time optimization.
Dr. Duong received the Best Paper Award at the IEEE VTC-Spring 2013,

IEEE ICC 2014, IEEE GLOBECOM 2016, 2019, 2022, IEEE DSP 2017,
IWCMC 2019, 2023, 2024, and IEEE CAMAD 2023. He was a recipient of
the prestigious Newton Prize 2017. He has also received the two prestigious
awards from the Royal Academy of Engineering (RAEng): RAEng
Research Chair (2021–2025) and the RAEng Research Fellow (2015–2020).
He has served as an Editor/a Guest Editor for IEEE TRANSACTIONS ON

WIRELESS COMMUNICATIONS, IEEE TRANSACTIONS ON COMMUNICATIONS, IEEE
TRANSACTIONS ON VEHICULAR TECHNOLOGY, IEEE COMMUNICATIONS LETTERS,
IEEE WIRELESS COMMUNICATIONS LETTERS, IEEE WIRELESS COMMUNICATIONS,
IEEE Communications Magazines, and IEEE JOURNAL ON SELECTED AREAS IN

COMMUNICATIONS.

VOLUME 12, 2024 107983


